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Abstract. We have generalized the plane-wave method used by Mathineet al (Mathine D L,
Myjak S K and Maracas G N 1995IEEE J. Quantum Electron.31 1216–22) for electrons to the
case of light and heavy holes in quantum well systems with an arbitrary growth direction. Our
method allows for relaxing the assumption of constant Luttinger parameters as used by Xia (Xia J-B
1991Phys. Rev.B 439856–64) and remains valid when the parameters experience discontinuities
across the heterointerface. Although the method has been thoroughly tested for rectangular quantum
wells only, it can be equally well applied to quantum wells of other shapes also.

1. Introduction

During the process of simulation of QW semiconductor lasers, one needs fast and reliable
methods of solving the eigenvalue problem for the effective-mass Luttinger–Kohn (LK)
Hamiltonian. The most straightforward methods can be reduced, in principle, to searching
for zeros of—as a rule—an extremely strongly varying function resulting from matching the
boundary conditions at the barrier–well interfaces. The function is in fact a determinant of a
4×4, 8×8, or 16×16 complex matrix, the elements of which contain different combinations of
exponential functions of the wave-vector components and energy. Obtaining the determinant
function is substantially simplified by using analytical expressions for the envelope functions
given by Andreaniet al [1], but the problem of finding zeros of the function in the case of an
arbitrary direction of growth remains very difficult and numerically unstable.

In the case of the growth direction(001), where the effective-mass Hamiltonian can be
block diagonalized [2,3], one is fortunate enough to encounter only a 4× 4 determinant. For
the majority of other directions of growth, an attempt at block diagonalization would lead
to messy and impossible-to-handle blocks containing, at best, combinations of the operators
∂/∂ζ and∂2/∂ζ 2 under the square root. Generally speaking, the straightforward methods
encounter difficulties due to strong variation of the search function, which originates from the
exponential character of the solutions.

The finite-difference method used in reference [4] does not need any sophisticated search
function, and at its final stage includes a simple diagonalization of a larger or smaller matrix.

§ Permanent address: Department of Physics and Computing, Wilfrid Laurier University, Waterloo, Ontario,
Canada N2L 3C5.
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It was successfully used by Meney [5,6] in valence subband-structure calculations for GaAs–
Al xGa1−xAs quantum wells for four different growth directions. However, the method raises
the question of computational stability, as a result of the replacement of derivatives with finite
differences, as well as that of the behaviour of the envelope functions in the barrier far from
the interface (where should they vanish?) These are unnecessary complications, given the
linearity of the differential equations in the eigenvalue problem under consideration.

Loset al [7] gave a general theoretical description of the 8× 8 (conduction band, heavy-
hole band, light-hole band, split-off band)Ek · Ep approach for determining the band structure
of quantum well semiconductor systems for any growth direction. To solve the effective-mass
equation they used the finite-element method, which has the advantage over the finite-difference
method that it takes into account ‘exactly’ the interface discontinuities of the potential and of
the band parameters, and ‘correctly’ matches the envelope functions at the interfaces

As indicated by Altarelliet al [8] in their study of GaAs–AlGaAs quantum wells by the
variational method [9], in the subband-structure calculations one can consider a superlattice
instead of an actual single quantum well, since when the barrier thickness is large enough
the isolated-well results are recovered. The plane-wave (PW) expansion method of Xia [10]
when applied to a superlattice with very thick barriers should then give the subband structure
of a corresponding isolated quantum well. Although Xia applied the PW method to a range
of growth directions, his calculations suffered from serious limiting assumptions about the
constancy of the Luttinger parameters (γj , j = 1, 2, 3) across the well–barrier interface.
Consequently the calculations are valid only when the changes of the parametersγj across the
interface are very small.

Recently, we have undertaken a systematic study of the effects of the growth orientation
on the performance of QW semiconductor lasers. In [11] we have reported the results of
effective-mass calculations using the PW method withγj = constantj . Here we describe
an easy method for carrying out quantum well subband-structure calculations based on the
effective-mass LK Hamiltonian. The method is the result of a generalization of the plane-
wave method used by Mathineet al [12] for electrons in the conduction band to the case of
holes in the valence band, with a simultaneous relinquishing of the assumption of constantγj
used in reference [10].

The objective of the present paper is the description of the method, which has the following
two advantages:

(a) it is fast and numerically stable for all directions of growth; and

(b) it works well when the Luttinger parameters experience discontinuities across the well–
barrier interface.

2. Description of the method

Let us consider a Cartesian system of coordinates with thex-axis pointing in the cryst-
allographic direction (100), they-axis in the direction (010), and thez-axis in the direction
(001). If we rotate the system of coordinates to a new position, thez-axis becomes a new axis,
theζ -axis, they-axis becomes a new axis, theη-axis, andx at the new position can be referred
to asξ . The new orientation of the coordinate system(ξ, η, ζ ) can be determined by the angle
θ betweenζ - andz-axes and the angleϕ between the projection of theζ -axis onto thex–y
plane and the oldx-axis.

The heterointerfaces of a quantum well structure grown in the direction of theζ -axis are
then parallel to theξ–η plane. The motion of holes in such a structure can be described by the
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following 4× 4 effective-mass Hamiltonian (in units where ¯h2/(2m0) = 1):

Ĥ = γ1(ζ )I(k
2
1 + k2

2 + k̂2
3) + IV (ζ ) + γ2(ζ )(Ak

2
1 + Bk2

2 + Ck̂2
3 + Dk1k2 + Ek1k̂3 + Fk2k̂3)

+ γ3(ζ )(A
1k2

1 + B1k2
2 + C1k̂2

3 + D1k1k2 + E1k1k̂3 + F1k2k̂3) (1)

where for a square quantum well

V (ζ ) =
{

0 if |ζ | < Lw/2

1Ev if |ζ | > Lw/2
(2a)

and

γj (ζ ) =
{
γ wj if |ζ | < Lw/2

γ bj if |ζ | > Lw/2
j ∈ {1, 2, 3}. (2b)

HereLw is the quantum well width,1Ev is the valence band discontinuity, andγ wj andγ bj
are the Luttinger parameters of the well and of the barrier materials.A, . . . , F, A1, . . . , F1 are
4× 4 matrices with matrix elements dependent onθ andϕ, I is the 4× 4 identity matrix, and
k̂3 = −i ∂/∂ζ .

The Hamiltonian (1) was derived by Xia [10] withA, . . . , F, A1, . . . , F1 given as functions
of the angleθ only (onlyϕ = 45◦ was considered). The effective-mass equation resulting from
equation (1) was solved in [10] with the limiting assumption that the Luttinger parameters did
not change across the well–barrier interface (γj (ζ ) = constantj ). In the appendix and table 1
we give the matricesA, . . . , F, A1, . . . , F1 for an arbitrary direction of growth specified by
both anglesθ andϕ.

In the present work, the effective-mass equation

ĤF(ζ ) = EF(ζ ) (3)

whereF(ζ ) = [F3/2(ζ ),F(ζ )1/2,F(ζ )−1/2,F(ζ )−3/2] is theζ -part of the envelope function,
was solved forγj (ζ ) given in (2b), i.e. without the limiting assumption requiring constant
Luttinger parameters that was employed in [10].

We replaced a single quantum well by a periodic pattern of wells separated by very thick
barriers:Lb = 10Lw. The envelope functionsFα(ζ ), whereα ∈ {3/2, 1/2,−1/2,−3/2},
the Luttinger parametersγj (ζ ), as well as the potentialV (ζ ) were expanded into series ofN
plane waves:

Fα(ζ ) =
(N−1)/2∑

n=−(N−1)/2

fα,n
1√
L

ei(2πn/L)ζ (4a)

γj (ζ ) =
N−1∑

m=−(N−1)

γj,m
1√
L

ei(2πm/L)ζ j ∈ {1, 2, 3} (4b)

and

V (ζ ) =
N−1∑

m=−(N−1)

Vm
1√
L

ei(2πm/L)ζ (4c)

wherefα,n are unknown coefficients independent ofζ ,

γj,m = 1√
L

∫ L/2

−L/2
e−i(2πm/L)ζ γj (ζ ) dζ (5a)

and

Vm = 1√
L

∫ L/2

−L/2
e−i(2πm/L)ζ V (ζ ) dζ. (5b)



4024 M Kucharczyk et al

Table 1. Matrix elements of the 12 matrices in the Luttinger–Kohn Hamiltonian (1). See the
appendix.

A1,1 = −6c2
θ s

2
θ

[
c4
ϕ + s2

ϕ

]
+ 1

A1,2 = −2
√

3cθ sθ
[
2c2
θ (c

4
ϕ + s2

ϕ)− 1 + icθ cϕsϕ(2c2
ϕ − 1)

]
A1,3 = −2

√
3c2
θ

[
c2
θ (c

4
ϕ + s2

ϕ) + (c4
ϕ − c2

ϕ − 1) + icθ cϕsϕ(2c2
ϕ − 1)

]−√3

B1,1 = −6c2
ϕs

2
θ s

2
ϕ + 1

B1,2 = −2
√

3cϕsθ
[
2cθ cϕs2

ϕ − isϕ(2c2
ϕ − 1)

]
B1,3 = −2

√
3cϕ

[
cϕs

2
ϕ(c

2
θ + 1)− icθ sϕ(2c2

ϕ − 1)
]

+
√

3

C1,1 = 6s2
θ

[
c2
θ (1− c2

ϕs
2
ϕ) + c2

ϕs
2
ϕ

]− 2

C1,2 = 2
√

3sθ
[
2cθ c2

ϕs
2
θ s

2
ϕ + cθ (2c2

θ − 1)− icϕsϕs2
θ (2c

2
ϕ − 1)

]
C1,3 = −2

√
3s2
θ

[
c2
θ (c

4
ϕ + s2

ϕ)− c2
ϕs

2
ϕ + icθ cϕsϕ(2c2

ϕ − 1)
]

D1,1 = 6cθ s2
θ cϕsϕ(2c

2
ϕ − 1)

D1,2 = 4
√

3cθ sθ cϕ
[
cθ sϕ(2c2

ϕ − 1) + i 2cϕs2
ϕ

]
D1,3 = 2

√
3cθ cϕ

[
sϕ(c

2
θ + 1)(2c2

ϕ − 1) + i 4cθ cϕs2
ϕ

]
E1,1 = 6sθ cθ

[
2c2
ϕs

2
θ s

2
ϕ + 2c2

θ − 1
]

E1,2 = −4
√

3cθ s2
θ

[
2cθ (c4

ϕ + s2
ϕ) + icϕsϕ(2c2

ϕ − 1)
]

E1,3 = 2
√

3cθ sθ
[
2c2
ϕs

2
ϕ(1 + c2

θ ) + 1− 2c2
θ + i 2cθ cϕsθ (1− 2c2

ϕ)
]

F1,1 = 6cϕs3
θ sϕ(2c

2
ϕ − 1)

F1,2 = 4
√

3cϕs2
θ

[
cθ sϕ(2c2

ϕ − 1) + i 2cϕs2
ϕ

]
F1,3 = 2

√
3sθ cϕ

[
sϕ(2c2

ϕ − 1)(1 + c2
θ ) + i 4cθ cϕs2

ϕ

]
A1

1,1 = 6c2
θ s

2
ϕ(c

4
ϕ + s2

ϕ)

A1
1,2 = 2

√
3cθ sθ

[
2c2
θ (c

4
ϕ + s2

ϕ)− 1 + icθ cϕsϕ(2c2
ϕ − 1)

]
A1

1,3 = 2
√

3c2
θ

[
c2
θ (c

4
ϕ + s2

ϕ) + (c4
ϕ − c2

ϕ − 1) + icθ cϕsϕ(2c2
ϕ − 1)

]
B1

1,1 = 6c2
ϕs

2
θ s

2
ϕ

B1
1,2 = 2

√
3sθ cϕ

[
2cθ cϕs2

ϕ − isϕ(1− 2c2
ϕ)
]

B1
1,3 = 2

√
3cϕ

[
cϕs

2
ϕ(c

2
θ + 1) + icθ sϕ(1− 2c2

ϕ)
]

C1
1,1 = −6s2

θ

[
c2
θ (1− c2

ϕs
2
ϕ) + c2

ϕs
2
ϕ

]
C1

1,2 = −2
√

3sθ
[
2cθ c2

ϕs
2
θ s

2
ϕ + cθ (2c2

θ − 1)− icϕsϕs2
θ (2c

2
ϕ − 1)

]
C1

1,3 = 2
√

3s2
θ

[
c2
θ (c

4
ϕ + s2

ϕ)− c2
ϕs

2
ϕ + icθ cϕsϕ(2c2

ϕ − 1)
]

D1
1,1 = 6cθ s2

θ cϕsϕ(1− 2c2
ϕ)

D1
1,2 = 4

√
3cθ sθ cϕ

[
cθ sϕ(1− 2c2

ϕ)− i 2cϕs2
ϕ

]
D1

1,3 = 2
√

3cθ cϕ
[
sϕ(c

2
θ + 1)(1− 2c2

ϕ)− i 4cθ cϕs2
ϕ

]
+ i 2
√

3

E1
1,1 = −6sθ cθ

[
2c2
ϕs

2
θ s

2
ϕ + 2c2

θ − 1
]

E1
1,2 = 4

√
3cθ s2

θ

[
2cθ (c4

ϕ + s2
ϕ) + icϕsϕ(2c2

ϕ − 1)
]− 2
√

3

E1
1,3 = −2

√
3cθ sθ

[
2c2
ϕs

2
ϕ(1 + c2

θ ) + 1− 2c2
θ + i 2cθ cϕsθ (1− 2c2

ϕ)
]

F 1
1,1 = 6cϕs3

θ sϕ(1− 2c2
ϕ)

F 1
1,2 = −4

√
3cϕs2

θ

[
cθ sϕ(2c2

ϕ − 1) + i 2cϕs2
ϕ

]
+ 2i
√

3

F 1
1,3 = −2

√
3sθ cϕ

[
sϕ(2c2

ϕ − 1)(1 + c2
θ ) + i 4cθ cϕs2

ϕ

]
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The plane-wave expansions (4a)–(4c) were substituted into equation (3). Next the system
of four equations (3) was multiplied on both sides from the left by(1/

√
L)e−i(2πn′/L)ζ , where

−(N − 1)/2 6 n′ 6 (N − 1)/2, and each term was integrated overζ from −L/2 to L/2.
This gave a system of 4N linear equations for the coefficientsfα,n in the expansion of the
envelope functions (4a), as the effective-mass Hamiltonian was represented by the matrix

Hαβ,n′n = L−1/2

{
γ1,n′−nδαβ

(
k2

1 + k2
2 +

4π2n′n
L2

)
+ δαβVn′−n

+ γ2,n′−n

[
Aαβk

2
1 +Bαβk

2
2 +Cαβ

4π2n′n
L2

+Dαβk1k2 +Eαβk1
π(n′ + n)

L

+ Fαβk2
π(n′ + n)

L

]
+ γ3,n′−n

[
A1
αβk

2
1 +B1

αβk
2
2 +C1

αβ

4π2n′n
L2

+D1
αβk1k2

+ E1
αβk1

π(n′ + n)
L

+ F 1
αβk2

π(n′ + n)
L

]}
(6)

whereα, β ∈ {3/2, 1/2,−1/2,−3/2} andδαβ is the Kronecker delta.
The appearance in equation (6) ofγj,n′−n and ofVn′−n explains the different summation

limits in equations (4b) and (4c) as compared to equation (4a). Whereasn andn′ takeN
different values (between−(N − 1)/2 and (N − 1)/2), n′ − n takes 2N different values
(between−(N − 1) andN − 1).

To ensure the hermiticity of this Hamiltonian matrix, we replaced the operatorγj (ζ )k̂
2
3

which appears in equation (1) as follows:

γj (ζ )k̂
2
3 = −γj (ζ )

∂2

∂ζ 2
with − ∂

∂ζ
γj (ζ )

∂

∂ζ
(7)

and also

γj (ζ )k̂3 = −iγj (ζ )
∂

∂ζ
with − i

2

[
γj (ζ )

∂

∂ζ
+
∂

∂ζ
γj (ζ )

]
. (8)

Compare for example [2].
The chosen replacement ofγj (ζ )k̂3 andγj (ζ )k̂2

3 corresponds to the approach of Altarelli
et al [8, 9] in which the envelope function and the probability current density are continuous
across each interface (‘conventional’ boundary conditions). It must be emphasized that this is
not the only way of ensuring hermiticity of the Hamiltonian. The replacement ofγj (ζ )k̂

2
3 by

−γ aj (ζ )
∂

∂ζ
γ bj (ζ )

∂

∂ζ
γ aj (ζ ) with 2a + b = 1

does the job just as well, but with different boundary conditions at the interfaces, dependent
on the values ofa andb [13,17]. The correct choice of the boundary conditions corresponding
to a way of ensuring hermiticity of the Hamiltonian other than that given by equations (7) and
(8) can be made if one derives the effective-mass Hamiltonian directly from Burt’s [18] exact
envelope-function theory for semiconductor microstructures, as was done by Foreman [19,20]
and Meneyet al [21].

Although the ‘conventional’ boundary conditions do not include correctly the effect of
remote bands [21] and overestimate the interband coupling [19], we decided to use equations (7)
and (8). The reason for this is that all of the numerical calculations of the subband structure
for different growth directions carried out so far by other authors [5–7,10] were based on this
symmetrization of the Hamiltonian. Since the main advantage of our method is the ease with
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which it allows one to determine the subband structure for any growth direction, it made sense,
for the sake of the comparison of results, to obtain them with the same symmetrization of the
Hamiltonian as was used by other authors (‘conventional’ boundary conditions).

Diagonalization of the matrix (6) for a range of valuesk1 andk2 yielded the energy bands
E(k1, k2) as well as the envelope functions (coefficientsfα,n). This was done by using the
subroutine DEVCHF from IMSL MATH/LIBRARY™ [22].

3. Results

Using the method described in the previous section, we have calculated band structures for
several different growth directions. For the direction (001) we were able to calculate a band
structure using Chuang’s method of block diagonalization [2], and compare the result with that
obtained by the present method and those used in [10] and [11].

0.00 0.02 0.04 0.06 0.08 0.10
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-100

-80
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-40

-20

0

k

1

 (2π/a)

k

2
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E
n

e
r
g

y
 
(
m

e
V

)

Figure 1. Comparison of subband structures derived by different methods for a Ga0.47In0.53As–
In0.73Ga0.27As0.58P0.42 single quantum well withLw = 60 Å grown in the direction (001);
γ1w = 14.031, γ2w = 5.386, γ3w = 6.186, γ1b = 11.698, γ2b = 4.409, γ3b = 5.174;
a = 5.6533 Å;N = 55 plane waves in equations (4a)–(4c). − · ·−: γj = γj (ζ ), Chuang’s
method; —◦—: γj = constant (weighted average),L = 11Lw ; —+—: γj = constant (weighted
average),L = 6Lw ; ——: γj = γj (ζ ), L = 11Lw .

From the results shown in figure 1 one can see that the curves derived by the present
method and those derived by Chuang’s method converge to the same values fork = 0. The
differences between them show up for larger values of the wave vector. The plane-wave
expansion method with constant Luttinger parameters [10], as one could expect, gives results
which are dependent on the way in which those constant parameters are determined. A simple
arithmetic average forγj leads to a better agreement with Chuang’s method than the weighted
average(γj = (γjwLw + γjbLb)/L), the latter giving a significant discrepancy which has
already started atk = 0.

The results in figure 2 show the band structures for(001), (110), and(111) substrate
orientations calculated with the present method. We can see that there are quite different
energy band structures for different orientations. Similar curves may be calculated for any
arbitrary growth direction using our method, just by specifyingθ andϕ.
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Figure 2. Subband structures obtained by the plane-wave expansion method withγj = γj (ζ ) for
three different growth directions; the material composition and quantum well width are the same
as for figure 1.
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Figure 3. Envelope functions atk = 0 for the single-quantum-well system of figure 1.

The method allows one to obtain very easily envelope functions for any direction of
growth. The absolute values of the envelope-function componentsFα(ζ ) determine how large
the input will be from a given total-angular-momentum eigenfunction to the hole wave function
in a subband under consideration. If only one component of the envelope function, for example
that withα = 3/2, is not identically zero, then the hole wave function (and the corresponding
subband) has a well defined heavy-hole character.

For the(001) growth direction andk = 0, the only envelope-function components which
survive are those shown in figure 3. Consequently one can see that the envelope functions
evaluated by the present method show the correct symmetry and give an accurate classification
of the energy subbands. Our calculations of the envelope functions fork 6= 0 have shown band
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mixing, i.e. inputs from different total-angular-momentum eigenfunctions to a given hole state.
To get an idea of how the accuracy of the energy eigenvalues depends on the numberN of

plane waves used in the expansions (4a)–(4c), we carried out the same numerical calculations
with three different numbers of plane waves, namelyN = 55,N = 111, andN = 223. The
shift of the eigenvalues resulting from the change ofN is shown in figure 4. The subband
dispersion curves calculated with the three values ofN coincide so perfectly that they are
indistinguishable on the scales of figures 1 and 2. From examination of figure 5, one can see
that the maximum percentage shift of the eigenvalues is well below 0.4%. The tail of the HH2
curve in figure 5 above 0.3% is outside the range of energy of our pictures.
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Figure 4. The shift of the eigenvalues of the Hamiltonian (6) as the number of plane wavesN in
equations (4a)–(4c) changes from 55 to 223.
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Figure 5. The percentage shift of the eigenvalues of the Hamiltonian (6) as the number of plane
wavesN in equations (4a)–(4c) changes from 55 to 223.
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It is obvious that using a number of plane wavesN slightly larger than 100 should give a
sufficient accuracy of hole energies and envelope functions for a single-quantum-well system.
This requires the diagonalization of an approximately 400× 400 matrix for each value ofk,
and the calculation time is not a serious problem.

In conclusion, we have developed an efficient numerical method for determining the
band structures and envelope wave functions of the Luttinger–Kohn Hamiltonian for different
orientations of the substrate. Our method is free from the numerical problems encountered by
other methods.
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Appendix

Each of the 12 matrices in equation (1) has the following form:

X =


X1,1 X1,2 X1,3 0

X∗1,2 −X1,1 0 −X1,3

X∗1,3 0 −X1,1 X1,2

0 −X∗1,3 X∗1,2 X1,1

 .
For these matrices, we need to specify only three unique elements,X1,1, X1,2, andX1,3. To
write these elements in compact form, we use the following notation:

cθ ≡ cos(θ)

sθ ≡ sin(θ)

cϕ ≡ cos(ϕ)

sϕ ≡ sin(ϕ).

See table 1 in the text for a listing of the elements.
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