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Abstract. We have generalized the plane-wave method used by Maétiaé(Mathine D L,

Myjak S K and Maraca G N 1995|EEE J. Quantum Electror81 1216-22) for electrons to the

case of light and heavy holes in qguantum well systems with an arbitrary growth direction. Our
method allows for relaxing the assumption of constant Luttinger parameters as used by Xia (Xia J-B
1991Phys. RewB 439856-64) and remains valid when the parameters experience discontinuities
across the heterointerface. Although the method has been thoroughly tested for rectangular quantum
wells only, it can be equally well applied to quantum wells of other shapes also.

1. Introduction

During the process of simulation of QW semiconductor lasers, one needs fast and reliable
methods of solving the eigenvalue problem for the effective-mass Luttinger—Kohn (LK)
Hamiltonian. The most straightforward methods can be reduced, in principle, to searching
for zeros of—as a rule—an extremely strongly varying function resulting from matching the
boundary conditions at the barrier—well interfaces. The function is in fact a determinant of a
4x 4,8x8, or 16x 16 complex matrix, the elements of which contain different combinations of
exponential functions of the wave-vector components and energy. Obtaining the determinant
function is substantially simplified by using analytical expressions for the envelope functions
given by Andreangt al [1], but the problem of finding zeros of the function in the case of an
arbitrary direction of growth remains very difficult and numerically unstable.

In the case of the growth directiq®01), where the effective-mass Hamiltonian can be
block diagonalized [2, 3], one is fortunate enough to encounter only & 4leterminant. For
the majority of other directions of growth, an attempt at block diagonalization would lead
to messy and impossible-to-handle blocks containing, at best, combinations of the operators
9/d¢ and d?/8¢? under the square root. Generally speaking, the straightforward methods
encounter difficulties due to strong variation of the search function, which originates from the
exponential character of the solutions.

The finite-difference method used in reference [4] does not need any sophisticated search
function, and at its final stage includes a simple diagonalization of a larger or smaller matrix.

§ Permanent address: Department of Physics and Computing, Wilfrid Laurier University, Waterloo, Ontario,
Canada N2L 3C5.
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It was successfully used by Meney [5, 6] in valence subband-structure calculations for GaAs—
Al Ga_,As quantum wells for four different growth directions. However, the method raises
the question of computational stability, as a result of the replacement of derivatives with finite
differences, as well as that of the behaviour of the envelope functions in the barrier far from
the interface (where should they vanish?) These are unnecessary complications, given the
linearity of the differential equations in the eigenvalue problem under consideration.

Loset al[7] gave a general theoretical description of the 8 (conduction band, heavy-
hole band, light-hole band, split-off band} p approach for determining the band structure
of quantum well semiconductor systems for any growth direction. To solve the effective-mass
equationthey used the finite-element method, which has the advantage over the finite-difference
method that it takes into account ‘exactly’ the interface discontinuities of the potential and of
the band parameters, and ‘correctly’ matches the envelope functions at the interfaces

As indicated by Altarelliet al [8] in their study of GaAs—AlGaAs quantum wells by the
variational method [9], in the subband-structure calculations one can consider a superlattice
instead of an actual single quantum well, since when the barrier thickness is large enough
the isolated-well results are recovered. The plane-wave (PW) expansion method of Xia [10]
when applied to a superlattice with very thick barriers should then give the subband structure
of a corresponding isolated quantum well. Although Xia applied the PW method to a range
of growth directions, his calculations suffered from serious limiting assumptions about the
constancy of the Luttinger parameteis,(j = 1,2, 3) across the well-barrier interface.
Consequently the calculations are valid only when the changes of the parametersss the
interface are very small.

Recently, we have undertaken a systematic study of the effects of the growth orientation
on the performance of QW semiconductor lasers. In [11] we have reported the results of
effective-mass calculations using the PW method with= constant. Here we describe
an easy method for carrying out quantum well subband-structure calculations based on the
effective-mass LK Hamiltonian. The method is the result of a generalization of the plane-
wave method used by Mathiret al [12] for electrons in the conduction band to the case of
holes in the valence band, with a simultaneous relinquishing of the assumption of cgnstant
used in reference [10].

The objective of the present paper is the description of the method, which has the following
two advantages:

(a) itis fast and numerically stable for all directions of growth; and

(b) it works well when the Luttinger parameters experience discontinuities across the well—
barrier interface.

2. Description of the method

Let us consider a Cartesian system of coordinates withxthgis pointing in the cryst-
allographic direction (100), thg-axis in the direction (010), and theaxis in the direction
(001). If we rotate the system of coordinates to a new position;-tids becomes a new axis,
the¢-axis, they-axis becomes a new axis, theaxis, andx at the new position can be referred
to as¢. The new orientation of the coordinate systémn, ¢) can be determined by the angle
0 between:- andz-axes and the angle between the projection of the-axis onto thex—y
plane and the old-axis.

The heterointerfaces of a quantum well structure grown in the direction gf-thés are
then parallel to thé—n plane. The motion of holes in such a structure can be described by the
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following 4 x 4 effective-mass Hamiltonian (in units wheré/(2mg) = 1):
H = y1(0)1(k2 + k5 +k3) +1V (£) + y2(¢) (AKZ + BKS + Ck3 + Dkky + Ekyks + Fhoks)

+ y3(2) (A2 + B2 + Ck2 + DYkykp + EYkyks + Flkoks) 1)
where for a square quantum well

0 if |¢] < Ly/2
V() = : (2a)
AE, if [¢] > Ly/2
and
v if|¢] < Lw/2 ,
vi =17 je{1,23) (2b)
Vj if1¢] > Ly/2
Here L, is the quantum well widthAE, is the valence band discontinuity, apéf and y}’
are the Luttinger parameters of the well and of the barrier matesals.., F, A, ..., Fl are

4 x 4 matrices with matrix elements dependentamdey, | is the 4x 4 identity matrix, and
ks=—id/ac.

The Hamiltonian (1) was derived by Xia [10] with ..., F, A%, ..., F! given as functions
ofthe angle& only (onlyp = 45> was considered The effective-mass equation resulting from
equation (1) was solved in [10] with the limiting assumption that the Luttinger parameters did
not change across the well-barrier interfagg{) = constant). In the appendix and table 1
we give the matriced, ..., F, Al, ..., F! for an arbitrary direction of growth specified by
both angle® andg.

In the present work, the effective-mass equation

HF () = EF(¢) ®)

whereF () = [Fz/2(¢), F(&)1/2, F(&)-12, F(¢)—-32] is the¢-part of the envelope function,
was solved fory;(¢) given in (), i.e. without the limiting assumption requiring constant
Luttinger parameters that was employed in [10].

We replaced a single quantum well by a periodic pattern of wells separated by very thick
barriers: L, = 10L,,. The envelope functiong,(¢), wherea € {3/2,1/2, —1/2, —3/2},
the Luttinger parametens; (¢), as well as the potentidd (¢) were expanded into series Nf
plane waves:

(N=1)/2

Ful) = Y fun—r &hW“4 (4Q)
n=—(N-1)/2

vi(©) = Vim—ed@mLE e (12,3 (4b)

/ m*—% ! \/Z

and

o= Y v, gz (40

m=—(N-1)

wheref, , are unknown coefficients independentof

2
= e—i(271m/L)§ . d 5a
yj. \/Z/L/Z yj(é‘) g‘ ( )

and

L/2
Vy = —— g1 @m/Ly ey de. 5b
¢Z/U2 ©) d¢ (5b)
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Table 1. Matrix elements of the 12 matrices in the Luttinger—Kohn Hamiltonian (1). See the
appendix.

A]_]_——GCQS‘H [c +5 ]+1

A1 = —2/3cysp [2¢5(ch +52) — 1 +icgeysy(2c2 — 1))
Arz=—23c] [02(64 + S%) +(ch — cg -1+ icecws(p(Zci -D]-V3
Bi1= —662 2 +1

Bio = —Zx/é() 59 [2c0¢p52 —isy(2c2 — 1))

Bi3= —2\/§c [cwsw 2+1) — icas(p(ZCS — 1)] +4/3
C11=6s2 [69(1— c2s ) +cws5] 2

C12 = 2V/3sg [2c9¢2sZs2 + o (2c3 — 1) — icys,s2(2c2 — 1)]
C13=—23s%[c? (C + Sz) - 0252 +icpcysy (2c -]

D11 = 6cgsZcys, (2c2 — 1)

D12 = 4v3cgsgc, [cosy(2c2 — 1) +i2¢,52]

D13 = 2v/3cgcy [5,(c3 + 1)(2c2 — 1) +ideyeys?]

El,l = Bsycy [2(,‘2_3‘6232 + ch — ]_]

E1p = —4«/§ces0 [26'9 (03 + ss) +icys, (2c5 — 1)]

E13 = 2v/3cpsp [26252(1 +c3) + 1 — 22 +i2chcys9 (1 — 2c2)]
Fi11= Gcwsgsw(Zcé -1

F12 = 4/3c,s52 [ces(p(Zcf, -1+ i2c¢,s£]

F1g = 2/3sycy [5,(2c2 — 1)(1 +c2) +idcpc,s?]

Al 1= 6c2s2(c4 + s2)
1 )= = 2/3cpsp [26‘9 (c4 + sz) — 1 +icocys, (2(: -]
A% 3= 2\/§ce [c (c(‘7 + s%) + (c(p - "w -1+ Icgc(ps(p(Zcf, - 1)]
Bl 1= GCzsexw
B, = 2/3spc, [2chcys2 —is,(1— 2c2)]
B%_s = 2«/§c [c(ﬂsw(ce +1) +icgs,(1— 2C2)]
C%l = —6S02 [c (1—c K )+c£s£]
Cl 5= = —2/3s [2cec2s92v2 +cy (ZCg — 1) —licysysh (2c - 1)]
C1,3 = 2\/§59 [cg (c; + s%) —cg s2 +icgcySy (2c — 1)]
Di_l = BCgsezcwx(p(l - 2c£)
Diz = 4«/§C9S96(p [cesw(l — 205) — iZCwsé]
D} 5 = 2/3cgey [s(ch + D(L— 2c2) — i4cpcys2] +12+/3
Eil = —6sgpcy [202v6,2v2 + 2c§ — l]
Eiz = 4\/§C‘9502 [269 (cg + sg) +icySy (2(:5 - 1)] —2J3
Ei3 = —2/3cysy [2055‘5(1 +cg) +1— ZC(% +i2chcys9(1— 2c§)]
Fi| = 6cys53s,(1— 2c2)
Fll_2 = —4\/§c¢s(§ [cesw(ch -1+ iZCwsg] +2iv3
Fig=—2/3s9c, [5,(2c2 = D(1 +c2) +i4cpcys?]
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The plane-wave expansionsj4(4c) were substituted into equation (3). Next the system
of four equations (3) was multiplied on both sides from the left/L)e @'/ where
—(N=-1)/2 < n" < (N —-1)/2, and each term was integrated oyefrom —L/2 to L/2.
This gave a system ofM linear equations for the coefficienys , in the expansion of the
envelope functions @), as the effective-mass Hamiltonian was represented by the matrix

2./
Haﬁ,n’n = L_l/z{yl,n’—naaﬂ (k% + k% + 47TLZ n) + 5&,3 Vn’—n

4 '+
7T +Daﬂk1k2+Eaﬂle[(nTn)

+ V2,n’n|: aﬁkl + Baﬁkz + Cotﬂ

a(n' +n) 471 n'n

L

w(n' +n) m(n +n)
+ Ealz,sle + Fal,asz:| } (6)

+ Faﬂkz

i| T Van-n |:Ai,3k1 + Bl kz Cl + Dlﬂklkz

wherea, 8 € {3/2,1/2, —1/2, —3/2} andé,g is the Kronecker delta.

The appearance in equation (6))9f,—, and ofV,,_, explains the different summation
limits in equations (8) and (£) as compared to equationgdd Whereas: andn’ take N
different values (between (N —1)/2 and (N — 1)/2), n’ — n takes 2V different values
(between—(N — 1) andN — 1).

To ensure the hermiticity of this Hamiltonian matrix, we replaced the opeyf;\tobl%
which appears in equation (1) as follows:

2

~ 0 .
yj(ok%:—y,»(:)@ with — §<;)— @)

and also

A . 0
vi($)ks = —ly; (&) 9 with — [J/; ) — or Vj(()] . (8)

é“

Compare for example [2].

The chosen replacementp]f(;)lég andyj(g)lzg corresponds to the approach of Altarelli
et al[8, 9] in which the envelope function and the probability current density are continuous
across each interface (‘conventional’ boundary conditions). It must be emphasized that this is
not the only way of ensuring hermiticity of the Hamiltonian. The replacemem(qf)ég b

—Vj (C) Vi (é) 7/, (9] with2a +b =1

does the job just as weII, but W|th different boundary conditions at the interfaces, dependent
on the values of andb [13,17]. The correct choice of the boundary conditions corresponding
to a way of ensuring hermiticity of the Hamiltonian other than that given by equations (7) and
(8) can be made if one derives the effective-mass Hamiltonian directly from Burt’s [18] exact
envelope-function theory for semiconductor microstructures, as was done by Foreman [19, 20]
and Meneyet al [21].

Although the ‘conventional’ boundary conditions do not include correctly the effect of
remote bands [21] and overestimate the interband coupling [19], we decided to use equations (7)
and (8). The reason for this is that all of the numerical calculations of the subband structure
for different growth directions carried out so far by other authors [5—7, 10] were based on this
symmetrization of the Hamiltonian. Since the main advantage of our method is the ease with
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which it allows one to determine the subband structure for any growth direction, it made sense,

for the sake of the comparison of results, to obtain them with the same symmetrization of the

Hamiltonian as was used by other authors (‘conventional’ boundary conditions).
Diagonalization of the matrix (6) for a range of valugsandk, yielded the energy bands

E (k1, ko) as well as the envelope functions (coefficiefifs,). This was done by using the

subroutine DEVCHF from IMSL MATH/LIBRARY ™ [22].

3. Results

Using the method described in the previous section, we have calculated band structures for
several different growth directions. For the direction (001) we were able to calculate a band
structure using Chuang’s method of block diagonalization [2], and compare the result with that
obtained by the present method and those used in [10] and [11].

Energy (meV)

Figure 1. Comparison of subband structures derived by different methods fop a;(Bas3As—
Ino.73Ga.27AS0,58P0.42 Single quantum well withL,, = 60 A grown in the direction (001);
yiw = 14031, y», = 5386, y3, = 6.186, y1, = 11698, yp, = 4.409, y3, = 5.174;
a = 5.6533 A; N = 55 plane waves in equationsaj4(4c). — - -—: y; = vj(¢), Chuang'’s
method; —=—: y; = constant (weighted averagé)= 11L,,; —+—: y; = constant (weighted
average)L = 6L, —: y; = y;j(¢), L = 11L,,.

From the results shown in figure 1 one can see that the curves derived by the present
method and those derived by Chuang’s method converge to the same valies for The
differences between them show up for larger values of the wave vector. The plane-wave
expansion method with constant Luttinger parameters [10], as one could expect, gives results
which are dependent on the way in which those constant parameters are determined. A simple
arithmetic average foy; leads to a better agreement with Chuang’s method than the weighted
average(y; = (yjwLw +yj»Lp)/L), the latter giving a significant discrepancy which has
already started dt = 0.

The results in figure 2 show the band structures(6@l), (110), and(111) substrate
orientations calculated with the present method. We can see that there are quite different
energy band structures for different orientations. Similar curves may be calculated for any
arbitrary growth direction using our method, just by specifyirande.
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T T T 1 T

Eo Growth Direction:
—— (001)
—— (110)

1

Energy (meV)

Figure 2. Subband structures obtained by the plane-wave expansion methog;witly; (¢) for
three different growth directions; the material composition and quantum well width are the same
as for figure 1.

- —HH1, a=3/2
: e LH1, @ =112
HH2, o =3/2
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Figure 3. Envelope functions at = 0 for the single-quantum-well system of figure 1.

The method allows one to obtain very easily envelope functions for any direction of
growth. The absolute values of the envelope-function composits determine how large
the input will be from a given total-angular-momentum eigenfunction to the hole wave function
in a subband under consideration. If only one component of the envelope function, for example
that witha = 3/2, is not identically zero, then the hole wave function (and the corresponding
subband) has a well defined heavy-hole character.

For the(001) growth direction and = 0, the only envelope-function components which
survive are those shown in figure 3. Consequently one can see that the envelope functions
evaluated by the present method show the correct symmetry and give an accurate classification
of the energy subbands. Our calculations of the envelope functioks#£d have shown band
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mixing, i.e. inputs from different total-angular-momentum eigenfunctions to a given hole state.
To get an idea of how the accuracy of the energy eigenvalues depends on the Miafber
plane waves used in the expansiors){44c), we carried out the same numerical calculations
with three different numbers of plane waves, namEly= 55, N = 111, andN = 223. The
shift of the eigenvalues resulting from the changeVofs shown in figure 4. The subband
dispersion curves calculated with the three value®/afoincide so perfectly that they are
indistinguishable on the scales of figures 1 and 2. From examination of figure 5, one can see
that the maximum percentage shift of the eigenvalues is well below 0.4%. The tail of the HH2
curve in figure 5 above 0.3% is outside the range of energy of our pictures.

1.0

0.9} 1
08 i N changed:
R from 55 to 111 7

I from 111 to 223 HH2 ]
06l ]

o7l

05} g
04} EARTI

03l B ‘ HH2 J
0al. o ]
0.1}
0.0 E

Shift of Eigenvalues (meV)

1

1
0.00 0.02 0.04 0.06 0.08 0.10

k, (2a)

Figure 4. The shift of the eigenvalues of the Hamiltonian (6) as the number of plane waires
equations (4)—(4c) changes from 55 to 223.

1.0 . T v T T T T T T
N changed:

0sl mrimn from 55to 111 ]
from 111 to 223

0.6 | )

Percentage Shift of Eigenvalues (%)

3 n " " 1 r
0.00 0.02 0.04 0.06 0.08 0.10
k, (2r7a)

Figure 5. The percentage shift of the eigenvalues of the Hamiltonian (6) as the number of plane
wavesN in equations (4)—(4c) changes from 55 to 223.
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It is obvious that using a number of plane wavéslightly larger than 100 should give a
sufficient accuracy of hole energies and envelope functions for a single-quantum-well system.
This requires the diagonalization of an approximately 40000 matrix for each value df,
and the calculation time is not a serious problem.

In conclusion, we have developed an efficient numerical method for determining the
band structures and envelope wave functions of the Luttinger—Kohn Hamiltonian for different
orientations of the substrate. Our method is free from the numerical problems encountered by
other methods.
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Appendix

Each of the 12 matrices in equation (1) has the following form:
X112 Xi12 X3 0
12 —X11 0 —X13
X1 0 —X11  X12
0 —XIB XIZ X11
For these matrices, we need to specify only three unique eleménts X, ,, andX; 3. To
write these elements in compact form, we use the following notation:

X =

cop = c096)
sp = Sin(®)
¢y = COYp)
5y = Sin(g).

See table 1 in the text for a listing of the elements.
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